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My research focuses on statistical modeling and inference for functional data, which is challenging due
to infinite-dimensionality, complex dependencies within and across observations and irregular noise.
In addition, there exists two sources of variation in functional data, namely amplitude (variation along
the y-axis) and phase (variation along the x-axis). During my graduate studies, I developed (i) meth-
ods for conformal prediction of partially observed functional data and (ii) a probabilistic functional
mixed effect model, both of which explicitly considered these two sources of variation. As a result,
the developed methods are able to achieve more accurate inferential results and reveal important data
features. In addition, I finished two application-driven projects. In the first, We built and compared
spatio-temporal kriging models for neighborhood disinvestment based on Google Streetview imagery
auditing; we also tested for associations with colon and rectum cancer survival.In the second, we
proved the suboptimality of classification and regression trees (CART) for latent probability classifica-
tion and proposed methods that modify the final splits of CART, resulting in better performance while
maintaining interpretability for policymaking.

Joint registration and conformal prediction for partially observed functional data Major revision, JCGS

Accurate prediction of future trajectories given historical functional data is an important question
in many applications. For instance, given complete, fully observed children’s growth rate functions
from age 1 to 18, one may be interested in predicting a nine-year-old child’s growth rate trajectory
as the magnitude and timing of growth spurts (local maxima in growth rate functions) are important
for disease diagnosis and prevention. Figure 1(a) shows growth rate functions from the Berkeley
growth data, with a (simulated) partial observation highlighted in red. Different children have different
numbers and magnitudes of growth spurts (amplitude variation) that occur at different ages (phase
variation). The goal is to construct pointwise prediction intervals (PIs) for the partial observation with
a coverage validity guarantee. Conformal prediction is well-suited for this task as it provides PIs that
have a finite-sample coverage guarantee without imposing strong assumptions on the data generating
process. In the functional data context, applying conformal prediction requires a careful construction
of exchangeable predictor-response data pairs, which are not naturally defined. Our solution was to
treat the partial observations from age 1 to 9 as predictors and the function values at any specific age as
responses. Based on this construction, we then applied conformal prediction on a fixed, uniform grid
of time points from age 1 to 18. Figure 1(b) shows the prediction results. While the PIs (red) provide
reasonable coverage for the true target function (black), the prediction band fails to capture the three
growth spurts, which are the key geometric features of the growth rate function. Consequently, the
point prediction (blue), which is taken to be midpoint of PIs at each time point, also misses the key
features. This is because amplitude and phase variation are entangled and growth rate function values
of other children at the same age fail to provide accurate information for prediction.

This motivated incorporating registration, which separates amplitude and phase variation, into func-
tional conformal prediction to improve prediction accuracy. Figure 1(c) shows an example of regis-
tration, where f, (red) is being registered to f; (blue), with the registered function shown in black.
After registration, the functions’ geometric features, i.e., two peaks and one valley, are much better
aligned. Registration is performed in a pairwise manner with respect to a chosen template, e.g., f
in the previous example. For simultaneous registration of multiple functions, a sample Karcher mean is
often used as the template. We leveraged split conformal methods to incorporate registration. We first
split the data into training and calibration sets. We used the training set to estimate the sample Karcher
mean, and then registered calibration functions to it. The new responses were defined pointwise based
on the registered functions in the calibration set. This construction maintains exchangeability while
enabling conformal prediction to capture aligned geometric features. The corresponding prediction


https://arxiv.org/abs/2502.15000

(@) (b) (c) (d) (e)
i B ) 25 2.5 25 20
=—Partial observation —target L —target —Centered Post. Samp.
% 203 —point pred. 20" —point pred. 1 —Centered Post. Mean
| \ \ warpMix Estimate
~f2

10 \
5 \/‘\
0
5 — fo, registered 5 \

1 5 9 13 18 g5 1 5 9 13 18 -5
Age Age 0 025 05 0.75 1 Age 0 0.5 1

Growth rate

-f

Figure 1: (a) Berkeley growth rate functions with a partial observation (red). (b) Target function (black), point
prediction (blue) and pointwise PIs (red) based on functional conformal prediction. (c) Illustration of registration:
f1 in blue, f, in red and f, after registration in black. (d) Same as (b), but based on joint registration and
functional conformal prediction. (e) Posterior samples (blue) and posterior mean (red) of fixed effect function,
and warpMix estimate (yellow).

results are presented in Figure 1(d). The point prediction (blue) is very close to the underlying target
function (black) and it clearly captures the three growth spurts. Moreover, the prediction band is much
tighter and more informative. I am currently developing a conformal prediction framework for shapes
of planar closed curves. Instead of a pointwise procedure, we use a basis expansion in an appropriate
tangent space and perform predictions via basis coefficients.

Future research directions:

(i) For data from a heterogeneous population with significant amplitude variation across subpopula-
tions, an overall Karcher mean may not be a good representative of any of the subpopulations. As a
result, registration and prediction become less effective. I plan to incorporate classification, clustering
or mixture models into the current framework to account for population heterogeneity.

(ii) The proposed method satisfies coverage validity and improves prediction accuracy through regis-
tration. However, | want to get a better understanding of the theoretical properties of the PI lengths to
answer the following question: can we further improve prediction accuracy and what is the best result
we can hope for?

(iii) I'd like to generalize the framework to more complicated data structures, such as spatial functional
data or functional time series, where the i.i.d. assumption is no longer satisfied.

Probabilistic size-and-shape functional mixed models NeurIPS 2024

Reliable recovery and uncertainty quantification of a population-level fixed effect function in functional
mixed models is a challenging problem. Again, consider the Berkeley growth data: while individual
children deviate from the average growth pattern in both magnitude (amplitude) and timing (phase),
we are interested in recovering the underlying population growth trend. Nevertheless, since ampli-
tude and phase variation are confounded with measurement error, this task is difficult using standard
functional mixed models. We addressed this by answering what can be reliably recovered: instead
of the fixed effect function itself, we targeted its size-and-shape. This geometric property is preserved
under the norm-preserving action of the group of phase functions, which can be interpreted as a rotation
of coordinates in an infinite-dimensional Hilbert space. Specifically, we proposed a Bayesian func-
tional mixed model with two object-level random effects: a “size-and-shape—preserving” component
7; that explains timing variability of growth spurts and a “size-and-shape-altering” component v; that
captures changes in the number and magnitude of growth spurts. For inference, we expressed the
fixed effect and random components v; using suitable orthonormal bases of the Hilbert space. Also,
we placed informative priors on the random component <;, which allows for regularization of the
posterior distribution of the fixed effect. Notably, inference for ; can be viewed as an automatic iden-
tification of a data optimal rotation of the chosen basis that best captures population and subject level
variations. Figure 1(e) shows posterior samples (blue) and the posterior mean (red) of the fixed effect
function when the proposed model was applied to Berkeley growth data. Estimation using warpMix,
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a state-of-the-art frequentist functional mixed model proposed by Claeskens et al. [2021], is shown in
yellow for comparison. The posterior mean of the fixed effect uncovers two growth spurts, a small
initial one followed by a larger pubertal one, whereas warpMix is only able to recover one small growth
spurt. These results suggest that our model successfully recovers representative geometric features of
the fixed effect function that the benchmark smooths away.

Future research directions:

(i) I plan to develop data-driven methods for selecting the type and number of basis functions for the
fixed effect and size-and-shape altering random effects.

(ii) I will extend the framework to sparse/fragmented functional or higher dimensional objects such as
curves and surfaces.

(iii) I plan to explore more efficient MCMC algorithms for posterior sampling or variational methods.
Applied statistical modeling in public health and social sciences

Spatio-temporal modeling for neighborhood disinvestment Under review

Neighborhood disinvestment, characterized by physical disorder in the built environment, has been
linked to health behaviors and outcomes, including cancer survival. While previous studies have
focused on spatial characteristics of built environment sampling schemes, temporal dimensions of
disinvestment remain underexplored, despite potential relevance for long-latency outcomes such as
colon and rectum cancer (CRC). We described a neighborhood auditing procedure based on Google
Streetview imagery in Franklin County, Ohio, developed and compared spatio-temporal kriging mod-
els of neighborhood disinvestment, and examined time-lagged associations between disinvestment and
CRC survival. Our analysis revealed a large spatial correlation in neighborhood disinvestment within a
short distance and moderate, long-lasting temporal dependence, with precise location information and
classic spatio-temporal kriging providing the most accurate predictions. We found evidence that higher
disinvestment prior to diagnosis was significantly associated with reduced survival time, particularly
among patients diagnosed at regional stage.

Future research directions:

(i) I will develop methods that incorporate residential mobility patterns of CRC cases used in the
external validation analysis.

(i) I plan to jointly perform prediction and validation, and quantify the corresponding uncertainty of
each step.

Improving CART for latent probability classification Under review

Policymakers often use recursive binary split rules to partition populations based on binary outcomes
and target subpopulations whose probability of the binary event exceeds a threshold. We formal-
ized the latent probability classification (LPC) problem and proved classic CART are suboptimal for
this task. Adapting concepts from decision theory, we proposed methods that modify the final splits
of CART and generate split rules that strictly dominate CART’s rules. When applied to real-world
datasets, our proposed methods generate policies that target more vulnerable subpopulations that
CART fails to identify.

Future research directions:

(i) We will extend the framework to policy learning while keeping the interpretability of tree-based
methods.

(ii) We will modify the procedure to incorporate potential budget, fairness, or coverage constraints.

(iii) We plan to further explore asymptotic and finite-sample statistical properties of the proposed
estimator of the split rule.

(iv) We will develop methods for uncertainty quantification.


https://arxiv.org/abs/2502.15072

References

G. Claeskens, E. Devijver, and I. Gijbels. Nonlinear mixed effects modeling and warping for functional
data using B-splines. Electronic Journal of Statistics, 15(2):5245-5282, 2021.



